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Abstract. We explore conservative refinements of specifications. These form a quite appropriate
framework for a proof theory for program inclusion based on a proof theory for program correctness.

We propose two formalized proof methods for program inclusion and prove these to be sound.
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Introduction

This paper aims at a detailed study of program equivalence, seen from the point
of view of Hoare’s logic for program correctness. Because program inclusion is just
halfway program equivalence we can safely restrict our attention to program
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inclusion. Moreover, this has the advantage of connecting closely to the theory of

programming using stepwise refinements as described in [2]. . .
Our work can be seen as belonging to the subject of axiomatic semantics for

programs. Its novelty lies in the precise mathematical analysis of the situation, in
addition to a rather strict adherence to first order proof systems and first order

semantics for data type specifications. o
Deriving program equivalence from program correctness properties is, of course,

not a new idea. It occurs in compiler correctness proofs (for instance, [16, 23]) as

well as in the general theory of program correctness [15].
Because of our interest in a proper theoretical analysis, we try to minimize the

semantical problems by working with while-programs only; this by no means

trivializes the problem. )
In the sequel of this Introduction an intuitive account is given of the key definitions

that underly the paper.

Intuition
Suppose that for S;, S,e WP(X) we have
(i) Alg(Z,E)ES,=S, (semantical inclusion)

and that we wish to prove this fact. Now obviously, (i) implies
(i) Alg(Z, E)E{p} S:{q} = Alg(Z, E)={p} S, {q} forall p,geL(5).

However, there is no reason to expect that the reverse implication (ii) = (i) will
hold, since (ii) states only roughly that S, = S,, where ‘roughly’ refers to the limited
expressive power of L(ZX). (In fact, Remark 7.8(2) shows that indeed (1) & (i).)
Now consider

(i) V(X' E)=(3,E) Vp,geL(Z)
Alg(2', E) E{p} S, {q} = Alg(Z', E") = {p} S, {q}.

Clearly (i) = (iii) = (ii). (For (i) = (iii), note that if (X', E'Y=(Z, E), then the
reducts of (', E')-algebras to X form a subset of Alg(2, E);hence Alg(2, E) = S, =
S: = Alg(3',E")E §,c8,.)

In fact, we will restrict our attention to a subclass of all refinements (=) of (2, E),

namely to the conservative refinements (=) of (%, E), for reasons which will be
clear later. So consider

(iv) Y(Z',E")=(3,E) Vp,qe L(X')
Alg(3", E") = {p} S, {q} = Alg(2', E") E{p} S, {q}.

Now we have (i) = (jii) = (iv) = (ii); and it turns out that (iv) = (i) (see
Remark 7.8(3)). The conclusion is that one can treat the ‘semantical’ inclusion (i)

by considering only first order properties of S,,S, (i.e., asserted programs
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{p} Si{q},i=1,2), provided one is willing to consider not only (2, E), but all its
(conservative) refinements.

This observation prepares the way for an approach via Hoare’s logic of proving
asserted programs. First of all, define

(V) Si€uusre S: iff Vp,q(L(2) (HL(Z, E)+{p} Si{q}
= HL(2, E)—{p} S:{q}) (proof-theoretical inclusion)

and consider
(vi) V(2',E)=(2,E) SiSuLs.eyS2 (derivable inclusion)

the proof-theoretical analogue of (iv). Indeed, it will turn out that this ‘derivable
inclusion’, written as HL(Z, E) + S, = S,, implies the semantical inclusion (i). This
is our first ‘proof system’ for proving semantical inclusion; we will prove that (vi),
as a relation of S;, S,, is semi-decidable in E.

One more remark about why it is natural to consider (vi), in casu the quantification
over all conservative refinements. The first reason of considering all (conservative)
refinements of (2, E) is that, only then, one is able to give as refined as possible
first order descriptions of S;=S,. This holds already on the semantical level.
Moreover, in (vi) there is another reason: to prove {p} S {q} we need invariants for
the while-loops in S. It may be the case that these invariants cannot yet be expressed
in the present specification, so we have to go ‘higher-up’. If one attributes a defining
power to statements S, namely to define the invariants of the while-loops, then one
could say that the defining power of S€ W% (ZX) is sometimes ahead of that of the
assertion language L(ZX).

Of course, the proof system given by (vi) is sound, i.e., (vi) = (i); otherwise it
did not deserve the name. Some simple program inclusions that are in its scope,
are program equivalences like ‘loop-unwinding’, and the kind of program equivalen-
ces considered in [20]. However, this proof system is not yet complete. In order to
prove the semantical inclusion (i) it is sufficient that (see Fig. 1)

THLGE',EM Fo(p) s, {q}:" .
..HL(Z",E") ‘_ {p} Sl {q}

Fig. 1. Partial order of conservative refinements.
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(viiy 3(X',E)e=(3,E) V(2" E"e (2, E') S Cuusen Sa
(Notation: HL(Z, E) - §,= S,; in words: forced inclusion.)

The reason that (vii) = (i) is a simple consequence of the invariance of semantical
inclusion (i), i.e., if (2, E")= (3, E) and Sy, S, € WP(X), then

Alg(Z,E)E S,=8, © Alg(3',E') = S,CS,.

(This does not hold for = instead of =.) So in order to prove Alg(2, E) = §;=S,
it is sufficient to find some (2’, E')= (2, E) where Alg(2', E') = S, 65..

The proof system embodied by (vii) is stronger than that of the derivable inclusion
(vi), and we will give some examples of program inclusion (which seem to have
some practical interest, too) which require the extra strength of this last proof system.

Still, (vii) is not ‘complete’—although it seems hard to find a non-pathological
example of a program inclusion which is semantical (i), but which cannot be forced
(vii). One can prove, however, that the following ‘cofinal’ inclusion is equivalent to
semantical inclusion:

(viii) V(X' Ee(3,E) 3(3", E")e (3, E') S; Suiis-en Sa.

(The equivalence (i) <> (viii) holds also when in (viii) & is replaced by =. However,
for = we have (vi)) = (viii), not so for =.)

One could suspect that there is a multitude of such relations obtained by repeated
alternating quantification V3V --- from the basic relation = HL(zE) (proof-
theoretical inclusion). It is a pleasant surprise, suggesting the naturalness of the
notions involved, that this possible hierarchy does in fact not exist, and that one
has no more relations than in Fig. 2.

HL(I,E) | s,
derivable

inclusion (vi) \
/ HL(Z,E) s.Cs
) [ 5,C5)

forced
inclusion (vii)

Cs,

s, C S
1=
HL(Z,E) ° JJ'
prooftheor. inc(v N
cofinal semantical
X inclusion (viiij<¢=3| inclusion (i)

/

inclusion
in some
refinement

Fig. 2.
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As we have seen, conservative refinements (=) are more natural for this theory
than general refinements (=). The technical reason is that for conservative refine-
ments the ‘Joint Refinement Property’ holds, stating that (almost) every two refine-
ments (2, E;)& (2, E) can be refined to a common refinement (25, E;) & (2, E;)
(i=1,2). (This is in fact a strengthened version of the well-known Robinson
Consistency Theorem.) Also for conservative refinements we have a useful upward
and downward invariance of the properties

Alg(3',E'YE{p} S{q} and Alg(3",E')ES,=S, for (3',E")=(5, E).

This paper is built up as follows: in Section 1 some notions about logic, programs
and Hoare’s logic are given. Section 2 gives a criterion and a characterization of
conservativity, and also Robinson’s Consistency Theorem (our Corollary 2.6.2) is
stated. Section 3 states Padoa’s method (our Theorem 3.3) and gives some applica-
tions. Section 4 contains definitions of the various inclusions. In Section 5 we deal
with the technical concept of protototype proofs, which will be basic for the proof
systems in the sequel. In Section 6 a logical complete refinement is constructed for
each specification. In Section 7 one of the main theorems is proved, establishing
the existence of two proof systems for =. In Section 8 we consider a prime example
to yield more insight in the relations between the various inclusions. In Section 9
we will show that some additional information about the domains of S;, S, can be
converted to information about semantical and forced inclusion S;= Ss.

1. Preliminaries

In this section we will collect the necessary basic definitions and facts from logic
in general as well as Hoare’s logic.

1.1. Preliminaries about programs and logic

The notions of first-order language, derivability () and satisfiability (=) are
supposed to be well known and we repeat them merely to fix the notations and
terminology used in the sequel.

In this paper we will exclusively deal with WP(ZX), the set of while-program S
defined inductively as follows:

Su=x=1|8,;S,|if b then S, else S, fi|while b do S od,

where te€Ter(2X), the set of terms over the signature X, b is a boolean (i.e.,
quantifier-free) assertione L(X), the first-order language determined by X. In
general, assertions € L(2) will be denoted by p, g, r. The signature says what ‘non-
logical’ symbols we are considering; here equality (=) is considered as a logical
symbol. We also allow infinite signatures. For a further definition of signatures and
specifications, see Definition 2.1. Note that the signature defined theré is part of
the alphabet of L(X).
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If (X, E) is a specification (see again Definition 2.1), the algebras (or models) in
Alg(Z, E) will be denoted by & =(A,...) where A is the underlying set of the
algebraic structure .

We will need the following well-known fact.

1.1.1. Godel’s completeness theorem

(Z,E)-p © Alg(Z,E)E=p forallpe L(2).

We will also need the following lemma.

1.1.2. Computation Lemma. Let x=1x,,...,x, and y=y,,..., y.. Let S=S(x)e
WP(Z) (ie., S contains precisely the variables x).

Then for all neN there is a quantifier-free assertion Compg, ,,(x) =y in L(ZX) such
that, for every of € Alg(3) and all a,be A,

A = Comps,(a)=b < |S(a)|=<n & S(a)=b.

Here a, b are constant symbols denoting a, b and [S(a)| denotes the length of
the computation of S on a.

1.2. Preliminaries on Hoare’s logic

Let p,ge L(2) and Se WP(Z). Then the syntactic object {p} S {q} is called an
asserted program. If o € Alg(Z), we define

A={p} S{q} © Va,bcA: S(a)| & S(a)=b < (A Epla)->q(d)).
Furthermore, we define
Alg(2, E)={p} S {q} & Vs eAlg(3, E) «={p} S {q}.

Hoare’s logic w.r.t.(2,E) is a proof system designed to prove facts like
Alg(2, E) = {p} S {q}. We will call this proof system HL(Z, E). It has the following
axioms and rules, by means of which we can derive asserted programs (notation:

HL(Z, E)~{p} S{q}):
(1) Assignment axiom:
{plt/x]} x=1t{p}
(2) Composition rule:
{p}Si{r} {r}S:{q}
{p}tS:; S, {q}
(3) Conditional rule:

{pnb}Si{q} {pr—b}S,{q}
{p}if b then S, else S, fi{q}
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(4) Iteration rule:

{pnb}S{p}
{p} while b do S od {p r—1b}

(5) Conseqitence rule:

p=>pi {ptS{qa} g91—¢q
{p} S{q}

where (2, E)-p->p, and (3, E)Fq,~>q.

1.2.1. Lemma. HL(Z2, E) is sound, ie., forall p,S,qe L(X):
HL(Z, E) —{p} S{q} = Alg(Z, E) = {p} S{q}.

Proof. For the proof, see, e.g., [13]. O

1.2.2. Definition. HL(Z, E) is logically complete, if, for all p, S, qe L(X),
HL(Z, E)—{p} S{q} & Alg(Z, E)={p} S{q}.

(In general, HL(Z, E) is not logically complete. The notion of logical completeness
is studied in [7].)
From the axioms and rules of HL(X, E) one can derive the following useful rules.

1.2.3. (i) Conjunction rule:

{p}S{q.} {p.} S{ga2}
{pirp2} S{qinqa}

(i1) Disjunction rule: The same as (i) with A replaced by v.

(iii) Invariance rule: If the free variables in p are disjoint from the variables in
S, then HL(Z, E) ~ {p} S{p}

(iv)  3-rule:

{p}S{r}

rovided z does not occur in S.
@zpysin P

2. Conservative refinements

In this section we will collect some facts concerning the notion of refinement and,
especially, conservative refinement. These notions will be of fundamental importance
in the sequel. All the material in this section (and the next, on ‘definability’) is
standard in Mathematical Logic and can be found (e.g.) in [24,21]. For easier
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reference and to conform to our notations, we will give a fairly extensive survey of
the subject. Since the arguments used in the proofs are relevant for the sequel, we
have included some of the proofs.

2.1. Definition. (i) A signature X is a set of nonlogical symbols to be used in
Predicate Logic. These may be constant, function or predicate symbols; the arity
of a function or predicate symbol is the number of arguments it is supposed to have.

(E.g., 2={0, S, P, <} is a signature where 0 is a constant symbol, S and P are
unary function symbols and < is a binary predicate symbol.) L(Z) denotes the set
of assertions in which only nonlogical symbols , o€ 2 occur.

(i) If E< L(X), the pair (X, E) is called a specification.

(i) Alg(ZX) is the class of all Z-algebras.

(E.g., £=(N,0, s, p, k) e Alg(Z), where X is as in the example above. Here 0 is
a constant of &, s and p are unary functions and k is a binary relation. We will
also write S for the interpretation or semantics of S in &, in casu s; for convenience
we will often neglect to distinguish notationally the symbol from its interpretation.)

(iv) Alg(Z, E) is the class of X-algebras & such that & = E.

(v) Alg(Z, E) = p means: for all &€ Alg(2, E), 4 F p.

2.2. Definition. (i) If 3'=3 and E'2FE we write (X', E')=(3,E) and call
(2', E') a refinement of (X, E). Here E ={pe L(Z)| E + p}. We will always suppose
that E, E’ are consistent.

(i) If (2', E')isfinite (i.e., both 3" and E’ are finite), then we write (U X', E U
E)=(3,E).

(iii) Let & be some algebra. Then =, is the signature of &/ and E, is the theory
of 4: Ey={pe L(2,)| o &= p}. Note that o/ = p & Alg(Z,, E4) = p.

(iv) Let (X, E) be a specification. Then E is complete if Ype L(X), E+ p or
E~-p.

2.3. Definition. (i) Let (2',E’)=(3,E) be a refinement such that: Vpe
L(2)E'+p & E+ p. In other words, such that E'~ L(X) = E. Then this refine-
ment is called conservative over (X, E). (So a conservative refinement does not
yield more theorems in the ‘original’ language L(X).)

Notation: (2',E")= (3, E)

(ii) (&', E") = (3, E) © (2,E)=(3,E) & (3',E’) = (3, E).

2.3.1. Remark. Note that if E iscomplete, (X', E') = (3, E) = (Z',E"Y=(2, E).

2.4. Definition. Let X' 3.

(i) (3, E)isa sge_ciﬁcation, then the restriction of (X', E’) to the signature
3 is (X, E) where E=E' nL(Z3).
We write px (2', E')=(3, E).
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(ii) If '€ Alg(2', E’), then the restriction of &' to X is obtained by deleting
all constants, functions, predicates in &' corresponding to symbols in £'—3. We
write p3 (s£')= o for this restriction. & is also called a reduct of &', and &' is
called an expansion of .

We will also write of < ',

(iii) Let X = A. Then &y is the expansion of & obtained by adding the ae X
as designated constants. Instead of &/, we write .

Example: For o as in Definition 2.1. (iii), & =(N,0,1,2,3,...,s,p, k). (So in
L(Z 4) one can refer to all elements of A by name.)

2.4.1. Remark. Note that if &' =, then (24, E )= (2,4, Ey).

2.5. Definition. Let of, % € Alg(X). Then:
(i) A =B (A, B are elementary equivalent) iff E,; = E..
(ii) Let Ac B. Then A <A iff o= B4
(& is an elementary sub-algebra of %, or & is an elementary extension of «.)

2.5.1. Remark. Note that <% = A=R.

2.5.2. Proposition. ¥ <%B & B, E 4.

Proof. For the proof, see [24, p. 74]. O

In the sequel we will mostly deal with conservative refinements (2 ). They have
the pleasant property that two refinements (2;, E;)& (2, E) (i=1,2) can be joined
to a refinement (2, uZ%,, E,UE,) = (2, E), provided the obviously necessary
requirement that ¥, "3, =X is satisfied. This is a (strong) form of Robinson’s
Consistency Theorem (RCT). The version we will need is slightly stronger than the
usual statement of RCT. For that reason we include part of the proof. We start
with the very useful Joint Consistency Theorem (JCT); for the (hard) proof we
refer to [24, p. 79]. From JCT the remaining theorems in this section easily follow.
In [21] another order of presentation is followed.

2.6. Joint Consistency Theorem (Craig-Robinson). Let (£, E) and (2, E') be
specifications. Then E U E' is inconsistent iff there is a closed assertionpe L(2,n X5)
such that E +— p and E' +—p.

2.6.1. Corollary (Craig Interpolation Lemma). Let p and q be closed assertions such
that +- p— q. Then there is a closed assertion r such that

(i) mp-»randr-gq,

(ii) every nonlogical symbol occurring in r, occurs in both p and q.

Proof. Clearly the specification {p,—g} is inconsistent: {p}n{mg}+p, p-
g, 9, Mg, false. Hence by Theorem 2.6 there exists a closed assertion re L({p, 7q})
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such that { p} - r and {~g} — —r. By the Deduction Theorem it follows that = p-r
and ——g->-r O

2.6.2. Corollary (Robinson’s Consistency Theorem) (see Fig. 3). Let (2, E) =
(3o, Eo), i=1,2, such that 3,n 2, =23, Then
(i) E,u E, is consistent, moreover
(i) (Z,u2,, E\UE,) = (X, E,), and even
(iii) (2,03, EyUE,) = (3, E) (i=1,2).

(El u£2, E] u Ez)
(EI,E]) (ZZ,EZ)
3 3
(ZO,EO)
Fig. 3.

Proof. Part (i) immediately follows from (ii), which follows by transitivity of &=
from (iii).

Ad (iii): Suppose E;u E, - p for a closed assertion pe L(ZX;).

Therefore, {e;, e;} ~ p for some closed assertions e;€ L(Z,;), i=1,2, such that
E;+ e. By the Deduction Theorem:

= e2= (e, p).
By Craig’s Interpolation Lemma 2.6.1:

Fey,>r (%)
and

Fr>(e,»p) (k%)

for some re L(3,n3,)=L(3,). By (%), we have E,+r. Hence E,F r, since
(25, Ey) & (2, Ey). So, by (k%), Ey+ €, p. Therefore E, + p; and this proves
(2,02, E\UE,) = (3, E,). Likewise for (2, E). O

Next, we will give a characterization of the conservativity of refinements. For
many purposes, however, the following criterion for conservativity is sufficient.

2.7. Definition. Let (X', E') be a refinement such that every &/ € Alg(2, E) can be
expandedtoan &' € Alg(X', E'). Then this refinement is called simple (see Fig. 4).
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Alg(n')

Alg(7)
///%"/ Al (7,E)

Fig. 4.

2.7.1. Proposition (Criterion for conservativity). Simple refinements are con-
servative.

Proof. Suppose (X', E') is a simple refinement of (2, E), ie., Vo e Alg(Z, E)
A’ e Alg(2', E') A'= A. Let E ¥ p for some closed assertion p. Then by Godel’s
Completeness Theorem 1.1.1, & & p for some o € Alg(Z, E). So there is an '€
Alg(2’, E') such that &' = 4. Hence o' —p; reasoning backwards we have
E'vp. 0O

In general, the situation is more complicated. If (2', E')= (X, E), it may be the
case that some & € Alg(2, E) cannot be expanded to an #' € Alg(2’, E'). So we
may ‘lose’ models when taking a refinement. However, such a ‘lost’ model & is
always an elementary substructure of (and hence elementary equivalent to) an &’
which is not ‘lost’ (see also Theorem 2.7.3 below).

2.7.2. Example (Shoenfield [24, p. 96]). Let &' contain the constant symbols
Co» C1» Cas ... and let E'={c, # ¢;|i# j}. Let (X, E) be obtained by omitting ¢, and
let 4 be (N—{0},1,2,3,...). Then « cannot be expanded to an '€ Alg(2', E'),
since there is no ‘room’ for (an interpretation of) c¢.

2.7.3. Theorem (Characterization of conservativity) (see Fig. 5). Let (X', E')=
(2, E). Then the following statements are equivalent:
(1) (X' E") & (2 E).
(i) Vo e Alg(3, E)3 A e Alg(3, E), d"e Alg(X', E') such that A < .Ad' = A",
(i) E'UE , is consistent for all o € Alg(3, E).
(iv) E'U E, is consistent for all A € Alg(2, E).
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Alg(zs')

Alg(z',E")

Alg(x)

Alg(%,E)

Fig. 5.

Proof. (ii) = (i): Suppose E v¥p, pe L(Z). Then & & p for some « € Alg(Z, E).
Now there are &'e Alg(Z, E) and «"€ Alg(2’, E’) such that ¥ <«'=«". By
Remark 2.5.1, of = ¢f'. Hence also &' = —1p. Therefore, «” = —p; so E' ¥ p.

(i) = (iii): Let (2',E")=(Z, E) and suppose that, for some € Alg(Z, E),
E'U E yisinconsistent. By Theorem 2.6 there is a closed assertion pe L(2'n 3 &)=
L(Z) such that E'+ p and E 4~ —p. By conservativity, E + p. Hence o = p; a
contradiction with E 4+ —p, because Ey-—1p & g F=p & o = p.

(iii) = (ii): Suppose E'UE, is consistent. Then there is a %" such that
B"F E'UEg. Let ' be the reduct of B” to the signature 3, and let & be the
reduct of 8" to 2. Then B4 = E 4, so, by Proposition 2.5.2, o < %: and trivially
B=RB'

(i) = (iv): Trivial.

(iv) = (iii): Suppose E'UE « 1s Inconsistent. Then, by Theorem 2.6, E'+ p
and E 4+ —p for some pe L(2' N 2y)=L(Z). Now E 4~—p = E,+p, since
E is complete. Hence E’ U E,, is inconsistent. [

2.7.3.1. Example. Let ¥=(N, 0, 1, +, %) and let #* be some non-standard model
of arithmetic, so /*= #. Then (2=, Egv= (24, Ey).
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Proof: E y«u E is consistent for every o € Alg(Zy, E) (i.e., every o such that
A =AN) because E, = E, < E y». (Note that this refinement is not simple).

3. Definability

We now turn to a special kind of simple conservative refinement (the definitional
refinement), collect some material about definability, and use this to prove that ‘+’
is not definable in the algebra (N, 0, S, P) which will play an important role later on.

3.1. Definition. LetA < 3 andconsider (£, E). An n-ary predicatesymbol 7 € £ — A
is definable in terms of A in E, if there is an assertion pe L(A) such that
E-m(x),...,X,) o p

(where x,,..., x, are distinct variables). An n-ary function symbol ¢ € X—4 is
definable in terms of 4 in E if there is an assertion p € L(4) such that

Ei—¢(xlv---1xn)=y(_>p

(where x,,..., x,, y are distinct variables).

3.2. Definition. (X', E')=, (X3, E), in words: (X', E’) is a definitional refinement
of (2, E), if (2, E')=(Z2, E) and every symbole 2’ — X is definable in terms of X
in E'.

3.3. Theorem (Padoa’s method). Let (X u{r}, E) be a specification where t¢ X.
Then 7 is not definable in terms of X in E, if there are two models o4, B € Alg(Z u{t}, E)
such that A= B and o = o” for every nonlogical symbol o € 3, but 7 = 7%,

Proof. Let 7 be a predicate symbol. (The proof for function symbols, including the
constant symbols which can be considered as ‘O-ary’ function symbols, is similar.)
Suppose o, % exist as given in the theorem, and suppose that 7 is definable in
terms of 2 in E. That is,

Er1(x) & p,
for some assertion p € L(ZX). Then for ae A we have
act™ & dE=pla]l © BEplal © aer”
(where the middle equivalence follows since pe L(X) and &, B have the same

interpretation for every symbol in X). Hence 7 = %, contradiction. [J
p y sy

3.3.1. Remark. (i) A much stronger theorem results when, in Theorem 3.3, ‘if’ is
replaced by ‘iff’, namely Beth’s Definability Theorem (BDT).
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(ii) Write (Z', E')=' (2, E) iff 3'— X is a singleton. Then the version of BDT
as indicated in (i) can be paraphrased as (2, E')=} (2, E) & the mapping
p3 :Alg(Z', E') is injective.

A slightly stronger version of BDT as, e.g., in [24, p. 81] says the same
for =4 instead of =J.

Noting further that &4 implies & ,, we have the following model theoretic charac-
terization of definitional refinements:

(2,EN=4(Z,E) &
& ps :Alg(2, E')~> Alg(Z, E) is injective
& pi:Alg(Z', E') > Alg(Z, E) is bijective.

3.3.2. Application. In the sequel we will need the following.

Fact. Let £ =(N,0, S, P). Then the function + is not definable in .

Proof (by Padoa’s method). (For another proof, using elimination of quantifiers,
see Section 8.) Suppose + is definable in &; i.e., for some assertion r we have

AE=rla b c] ©® at+b=c
Now let &'=(N, 0, S, P, +), so

A'Er(xy z)e x+ty=2
Hence

Egtr(xyz) e x+y=z

so the symbol + is definable in terms of 2, in E 4.

To show that this is contradictory, we use Padoa’s method (Theorem 3.3): We
will try to find Ny, Ny, € Alg(Z 4, E ) such that Ny =N,, o1 = o2 for all o # +,
but +™1 # +*2 Two such models are readily obtained; we have to take ‘non-standard’
models:

Mz(NX{O})U(ZXN+)7 OO: S,Pa+i) (lzla 2)3

where N*=N—{0}, and where we write a, instead of (a, b). Further, S(n,,)=
(n+1),, P(n+1),,=n,, P(Og) =0Oq¢ and n,, +n,, = (n+n") jimems (i=1,2).

(Intuitively; the n, are the standard numbers; there are nonstandard numbers
divided in copies of Z, indexed by positive integers. The point is that these indices
are so to speak indiscernible for the specification in question, so there is considerable
liberty in defining ‘+’ on the non-standard part.)

3.3.3 Example. Some reducts of arithmetic. In the schema given by Fig. 6 most of
the above concepts are illustrated. Upward lines denote conservative refinements
(of the theory of the structure in question); the ‘clusters’ of structures are equivalence
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(N ,0,1, +,x,exp)
(N ,0,1, +,x)
(N ,0,8,P, +,x) full arithmetic
A (IN,0,S,x, +)
(N ,0,S,P,x )
(N ,0,S,x)

- - E
o
o
=)
5]
u 3 M 1, + f .
xl oW (N,0,1,+,8,P) Presburger arithmetic
@ 2R (N,0,1, +)
En) a Nal!
b a4 (N ,0,S,P, +)
; | 2z
< 9 o 3% (N ,0,8, +)
=) o -
[#] v >~
N ~ 0
2y - [ bl @
M @ %] — - s
o] (=¥ -
@ @ o
£ > o @ o
= — Rl = =1
P o R}
2 3 i =9 N ,0,S,P)
a o © o (I,0,8, Abacus arithmetic
'g 52 ,8.2 N .0 s)
o > 0 (I~} ( L
s v e Te ST 0,0
el e Sial e (]N, ) )
— Gy N
s o c o
G ¢ o
s
V v v
(IN)
Fig. 6.

classes w.r.t. the equivalence generated by 4. Simple refinements are indicated
with ‘s’. The most remarkable facts here are the definability of exponentiation from
0,1, +, X, which is well known; and less well known, the definablity of + in terms
of 0, S, X, by the following:

i+j= k @ (i’k!/)l(jlkl!)l —_ ((i’j’)l(kl!k!l))l’
where x' = Sx, x"=S(Sx) (see [11, p. 219]).

4. Program inclusions

We will now introduce the various notions of the inclusion = between statements
S1, 5, WP(2) that we will study, and prove some elementary facts about them.

4.1. Definition. Let Se¢ WP(2) and o =(A,.. 7)eAlg(E, E). Let S contain the
variables x,,...,x, (n=1). Then S¥: A" > A" 15 the partial function determined
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by S.ie.,
(b,,...,b,) if S converges with input
S ay, ..., a,)= (ay,...,a,) and yields (b, ..., b.),
undefined  otherwise.

4.1.1. Remark. The restriction to functions f: A" > A" is not essential. Instead of,
e.g., f(xy, Xz, X3) = X; * X, one may use f'(xy, Xz, X3) = (X1 * X,,0,0).

4.2. Definition (Semantical inclusion). Let S, S,€ W?(X). Then
(i) AlgZ E)=ScS, © SYcSy forall geAlg(3, E).

This inclusion is said to be semantical. Instead of the left-hand side we will also use

the notation S| Sayx.e) Sa-
(ii) Semantical equivalence w.r.t. (X, E) is defined by

4.3. Definition (Proof-theoretical inclusion)

(1) SiSuuse S, iff, forall pge L(Z),

HL(Z3, E) —={p} S, {q} = HL(Z, E) ~{p} S:{q}.

(Note the direction of the implication. Intuitively: S, is less defined than S, so
{p} S:{q} is more often trivially true.)

(ii) S =ui(sE) S, is the corresponding equivalence.
4.4. Definition (Derivable inclusion)

() HL(Z,E)-S,28, © V(X EN=(3,E)S, Curis g9 So.

(The terminology ‘derivable’ and the choice of the notation ‘’ is motivated by the
sequel: it will be proved that derivable inclusion w.r.t. (2, E) is semi-decidable in
E.) As before we define HL(Z, E) -~ S, = S, derivable equivalence w.rt. (2, E).

(i) HL(Z, E)+;SES, & V(2 E')=((2, E)S, Enisey Sa-

4.5. Definition (Forced inclusion)
HL(Z, E) - $,£5, © 3(X',E")= (3, E) HL(Z', E") - S, S,.

As before, forced equivalence w.r.t. (2, E) is defined.

4.6. Definition. The inclusion $,=8, is cofinal, ift

V(Z', E2 (2, E) 3(3", E"e(3,E') SSnuskn Sa
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It is clear that all inclusions (=) defined above are partial orders and that all
equivalences (=) are equivalence relations, except for forced and cofinal inclusion
resp. equivalence. For the last case, ‘cofinal’, we will eventually prove that ‘cofinal &
semantical’, hence cofinal inclusion is indeed transitive. We will now prove that also
forced inclusion is transitive—hence it is a partial order and forced equivalence is
an equivalence relation indeed. First we need a simple proposition about renaming
of symbols.

4.7. Definition. (X,, E,)=(2,, E,) ((£,, E,) and (£,, E,) are isomorphic specifica-
tions) if (X, E,) can be obtained from (Z,, E,) by renaming some of the nonlogical
symbols; distinct symbols must be replaced by distinct symbols.

4.7.1. Remark. So Robinsons Consistency Theorem 2.6.2 says (see Fig. 7) that if
(2, E)=(2,E),i=1,2, then for some variant (25, R5)=(2,, E>) such that
(2%, E)e= (2, E) there exists a (25, E;)= (2, E)), (23, E3).

Fig. 7.

4.7.2. Proposition. Let S|, S; € WP(Z). Suppose
(X', E"),(2",E"e=(2,E), (X, E)=(2",E") and X' nX'=3.
Then
(1) SiSuuse) S2 © S S S

(i) HL(Z',E')+~S,85, ©® HL(Z", E")- $,=S,.

Proof. (i) routine; (ii) at once from (i). O
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4.8. Proposition. Let S;, S,, S;€ WP(ZX). Then
HL(Z EYF S,=S5, & HL(Z, E) - $,58; = HL(Z, E) - $,=8;.

Proof. The assumptions are
I(ZLE)= (X E) V(2I,E!)e (2L E!) SiSuusren S (i=1,2)
(see Fig. 8).

(I1,ED (2,:E3)

Fig. 8.

Now consider such a (2}, E}), i=1, 2. By Proposition 4.7.2 we may suppose that

iNnX,=3  Now by Robinsons Consistency Theorem 2.6.2, (Z* E*) =
(21 U3 E{UEY) = (S, E). Also, by transitivity of =,y , in the ‘upper cone’ of
(2*, E*) we have S, =, S,. Hence HL(Z, E) - $S,=S,. O

Another corollary of Robinson’s Consistency Theorem (RCT) 2.6.2 is the fol-
lowing.

4.9. Proposition. Forced inclusion implies cofinal inclusion,

Proof. Suppose HL(Z, E) - S, E8,, ie.,

A ENe (S, E) v(z, E= (3, E) S EnLren S, (1)
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We have to prove the following (see Fig. 9):
V(2L El)e(2,E) 3(3Y, EY)= (2, EY) S\ Suusmen Sa (2)

H'.-_"' " "
o (BLED

. N .

Fig. 9.

Take (X', E') as in (1), and consider a (X}, E}) as in (2). By Proposition 4.7.2(ii)
we can ‘shift’ (£, E') to an isomorphic variant (X'*, E'*) such that 3'*~3'= 3,
and still having the property that S, =y, S, in all refinements.

Then take (27, E}) in (2) as the union of (£}, E}) and (3'*, E'*); by RCT 2.6.2
this is possible. [

4.9.1 Remark. For = instead of & the above proposition fails. E.g., take
Sl =Xx= 0
S,=if 0> 1 then x:=0 else x:=1 fi.

Let ¥={0,1, <}, E is the theory of partial order, E,= Eu{0<1} and E,=Eu
{0>1}. Then HL(Z, E,) ‘+" S, = S,, hence HL(Z2, E) ‘-’ S, = S,. However, for all
(2',E")=(X,E\), S Fuiixam Sa

4.10. Remark. All inclusions introduced above, except semantical inclusion, were
obtained by quantification over the ‘basic’ proof-theoretical inclusion ;. This
suggests looking at all inclusions of the following general form:

SiEina S: © V(2 ENe (3, E) 3(5,, E)= (3, E))
V(ZB, E?)E (227 EZ) Tt a(zlm Eﬁ'ln)2 (Eln 12 EZn I)
S EHL(2 Ean S2

and likewise S, =/ s 1, S, and the dual notions obtained by interchanging 3, V.



20 J.A. Bergstra, J.W. Klop

(Note that only alternating strings of quantifiers are interesting, since obviously
--VV--=~-V-- and likewise for 3.) So derivable inclusion w.r.t. (£, E) is
CYiLs.e ), forced inclusion is =7 (s g/, and cofinal inclusion is =7 s £. (In the sequel
we will also consider ‘inclusion in some refinement’: & }B{L(}j_ E)-)

Now between these generalized inclusions there are a priori the following implica-
tions (see Fig. 10 where an implication is downward). (Only the quantifiers of
Cri s.g) are mentioned.)

v v 3V vavav
v »
c
HL
v3 S
3 3v3
Fig. 10.

However, this hierarchy of inclusions ‘collapses’ because

. av _ _vav
() ERlxe = Shuse)

s v3 3
(i) Efilse =CSimise-
To see the nontrivial direction of (i), note that it was already proved in Proposition

4.9. By a similar argument (ii) also follows.,

Now 3V3IV =33V =13V, YAVIV =VY3IV =3V, etc. Hence the only inclusions are
those displayed in Fig. 11.

v
v
£
HL
v3
3
Fig. 11.

(Remark: We did not prove that Chucs.k) i a partial order. Question: Is it?).

4.11. Bemark. All inclusions that are defined above exhibit the desirable property
of staymg valid in a context: let S}, S, e WP(Z)andlet C[ ]be a context statement
(also in %), i.e., a statement with a ‘hole’. Then

S1E8; © V(] 1C[8,1=C[S,).
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The proof follows in a straightforward manner by observing that
Vp,qeL(2) HL(Z, E) - {p} S {q} = HL(Z, E) —{p} S, {q}
implies

Vp,qe L(Z) HL(Z, E) ={p} C[S:1{q} = HL(Z, E) —{p} C[S:]{q}.

4.12. Remark (Invariances). For a better insight in what happens inside the ‘cone
of refinements’, we will investigate whether the notions

(1) Alg(3E)=p Erp,
(2)  Alg(2, E)={p}S{q}; HL(Z E)+{p}Siq}
(3) Alg(3, E) = S,=8;; S Suise) Se

are invariant under ‘shifting (2, E) upward or downward’.

Ad (1). Upward and downward invariant (i.e., V(2',E"=(3, E)
(Alg(2, E)E p & Alg(2’, E') = p)); this follows simply from G&dels Complete-
ness Theorem 1.1.1 and the definition of conservativity.

Ad (2). Here the situation is already somewhat more complicated:
Alg(, ) ={p}S{q} is upward and downward invariant (see Proposition 4.13).
However,for HL( , ) —{p} S {q} we only have the (trivial) upward invariance, i.e.,

V(Z',E")= (3, E) HL(Z, E) +{p} S{q} = HL(Z', E") —{p} S{q}-

That here ‘<=’ does not hold, is because an invariant needed for the proof of
+1{p} S {q} may be available in (X', E’) but not yet in (2, E).

Ad (3). Again the semantical notion, Alg(,)F $,=5,, is invariant in both
directions. For ‘upward’ this is trivial; for ‘downward’ certainly not (see Lemma
4.14).

Finally, S, Sui(,) S, is neither upward, nor downward invariant. One can even
show that it may happen that S, =, S, is alternatingly true and false while
following some upward path (2,, E,) =S(%,, E,)=- - -

4.13. Proposition. Let (3',E')=(X,E), p,qeL(X) and Se WP(Z). Then
Alg(2, E) = {p} S{q} & Alg(2', E") = {p} S{q}.

Proof. (=). Trivial.

(&). To prove the reverse, we use Theorem 2.7.3, which says that for every
e Alg(2, E)thereisan &' € Alg(Z, E)andan &f"€ Alg(2’, E') suchthat # < o' =<
#". By Remark 2.5.1 we have of = &/'. Now the result follows by the following
lemma from [7]: “Let £ =%. Then &L ={p} S{q} © B={p}S{q}’. O

4.14. Lemma. Let (X', E')Y= (3, E). Then, forall S,, S,€ WP(2),
Alg(Z, E)E= =85, © Alg(2',E')E §,=8..
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e

Proof. (=) is easy: take e Alg(E’,E). Then px ()= € Alg(Z, E). So
& & §,= S,. But then trivially also &' = §, & S,, since the extra structure on &£’ does

not play a role. '
(). The proof of the reverse follows by contraposition: Take AeAlg(2 E)

such that & & §,= S. Then therearea=a,,...,a,€ Aand b= by,..., b€ Asuch
that, par abus de language:

d=S(a)=b and &5 S,(a)=b.
More precisely, for some n and for all m:

o = ¢,(a.b) n,(a, b),
where

¢n(£9 é_\’ = CompS‘.n(g) = k and ¢m(£, é) = _'C()mpsz.m(ﬂ) = k

Let I” be the set of assertions {¢,(a, b)}U{¥,,(a, b)|meN}.

Claim. For some B, 8= E'Ul. So B S,=S,, hence Alg(3', E') 5 S,=8,
and we are through.

Proof of the claim. Suppose there is no such %, i.e., E'U T is inconsistent.
Then for some finite A< I we have that E'u A is already inconsistent. Say
A={d,, Wo,...,1¥_1}. So E'+ (¢, A\ ,., W), hence

E'==3xy (du(x ) A A 4i(x,5))-

By the conservativity of E’ over E we can replace E' here by E. However, this
contradicts the fact that

dE3xy (b (ny)n A ¢(xy). O

i<k

5. Prototype proofs

Let us abbreviate the implication
HL(2', E") = {p} S»{q} = HL(Z', E") - {p} S, {q}
by ®(3', E', p, q). So, by definition, HL(Z, E)+ S,= 8, is equivalent to
(2", E',p,q) forall (3',E")= (3, E) and all D.ge L(2').

Now it turns out that among all these ®(3', E’, p.q) there is a ‘generic’ one
D(3°, E° r(x), r'(x)). Le.,

(2% E° r(x), r'(x)) &
© V(X EVe (5 E) VpqeL(X) &(3',E', p,q).

3’
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The situation is even further simplified, since the generic implication has an
antecedent HL(Z’, E°) —{r(x)} S, {r'(x)} which is always true. This reduces
checking whether HL(Z,E)~ S, =S, or not, to checking whether
HL(2°, E% +{r(x)} S, {r'(x)}, which is semi-decidable. (Hence our choice of the
notation — in HL(X, E)+ $,=S,.)

Finding this generic implication is based on the observation that every proof
HL(2', E') —{p} S {q} can be viewed as an instantiation of a prototype proof w(S).
In order to define this concept, we need an efficient notation for proofs of asserted
programs. One method is to consider a proof as a proof tree; a second way is to
consider a proof as a flow-diagram with assertions written at the cut-points. We
will use a more workable linear notation of proofs which will be introduced now.
First we will define the concept ‘interpolated statement’ which can be viewed as
the flow-diagram corresponding to the statement plus some assertions written at
some cutpoints.

5.1. Definition. The class IStat(X), with typical elements $*, S, S**,. .., of inter-
polated statements is inductively defined by

S* u= S|{p}S*|S*{p}|if b then St else S% fi|while b do S* od.

Here Se€ W%(2X). So the class of interpolated statements contains next to the
usual statements also asserted statements and statements interlaced with assertions
in an arbitrary way; but it contains also proofs of asserted statements. These will
be singled out by means of the following extended proof rules.

5.2. Definition. By means of the following axioms and extended proof rules we
can derive proofs of asserted statements:
(1) Assignment axiom scheme:

{plt/x]} x == t{p}
(2) Extended composition rule:

{p} ST {r} {r}S% {q}
{p} ST {r} S% {q}

(3) Extended conditional rule:

{prb}Stig} {pnr—b}S3iq}
{p}if b then {p A b} ST {q} else { pr b} S5{q}fi {g}

(4) Extended iteration rule:

{pnrb}S*{p}
{p} while b do {p A b} S*{p} od {p r—1b}
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(5) Extended consequence rule:

p->p {p}S*{a} g9.~>4¢
{r} {Pl}S*{‘h} {q}

5.3. Definition and notation. (i) Let Pr(Z, E) be the class of proofs (interpolated
statements) which can be derived using this axiom scheme and extended proof rules,
such that in rule (5) only implications provable from E are used.

(ii) If S*<€IStat(Z), then o(S*) will denote the underlying statement obtained
by erasing all {p} in S*. (So o can be inductively defined as follows:

o(S)=8S for Se WP(Z2)

o(S*{p}H) = o({ p} $*) = o(5%)

o(if b then S7 else S¥ fi) =if b then o(S}) else o(S¥) fi
o(while b do S* od) = while b do o(5*) od.)

(i) If S*ePr(Z, E), then «(S*) will denote the set of consequences p— p’ used
in the derivation of $*. Note that these consequences can be read of directly from
S*: k(S*)={p~p'|{p}{p'} = S*}. (Here ‘<’ denotes the relation of being contained
as a ‘subword’.)

(iv) If S*ePr(Z, E) and S*={p} ST {g, then pre($*) = p and post(S*) =gq.

(v) Let S*ePr(Z, E). Then S* is called a reduced proof, iff it contains no
occurrence of a triple {p}{q}{r}. (By the transitivity of -, every proof may be
supposed to be reduced, up to equivalence.)

5.4. Definition. (1) Two interpolated statements S* S** such that o(S*)=
o(8**)=S§ are called matching if at every place the same number of assertions
occur in §*, S**. (Notation: S$* ~ §**))
To be precise:
(i) S~S for Se WP(3),
(i) $*~8** = {p}S*~ {q} $** and S*{p} ~S** {q}
for all assertions p, g€ L(X),
(i) ST ~S¥* SF ~8S¥*
if b then ST else S¥ fi~if b then ST* else S¥* fi,
(iv) S*~g8* =
while b also S* od~ while » do S** od.

(2) Let $* =-—{p}—— be an interpolated statement containing { p}. Then S** =

——{p}{p}--is called a trivial expansion of S*.

5.5. Definition. In the following definition we will use a set of n-ary relation symbols
{rlic w}. If S*eIStat contains some of these r-symbols, [$*]; will be the result of
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replacing each occurrence of r; in $* by r(;;, where (,) :N*>N is the usual bijective

pairing function. (This device merely serves to ‘refresh’ the r-symbols where
necessary.)

(i) Let S € WP(2) involve the variables x (= x,,..., x,). By induction on the
structure of S we define 7'(S) as follows:

(M) 7' = 0 ={ro(x) [t/x]} x = t{ro(x)}.
2) (838 =[7"(5)] [7'(S2)]s.

(That is, 7'(S;) and 7'(S,) are concatenated, without infix. Moreover, the r
symbols in [7'(S))], are made distinct from those in [7(S5)];.)

3) 7'(if b then S, else S, fi) =

={ro(x)} if b then {ro(x) A b} [#'(S)]2 {ri(x)}

else {ro(x) A b} [7'(S>)15 {r: (x)}
fi {r,(x)}.

(4) 7'(while b do S od) =

={ro(x)} while b do {ry(x) A b} $* od {ro(x) A b} {r,(x)}

where $*=[7'(S)], and ro(x)=post(S*).

(ii) Now 7(8) ={ro(x)} [7'(S)]o{ri(x)}. (S) is called the prototype proof of S.

5.5.1. Example. Let S be x,:=0; x,:=1; while x,> x; do if x; =0 then x;:=0 else
x;=x,+1 fi od; x, = x; +x,. Then

w(S)=
{ri(xy, x5, x3)}
{r2(0, x,, x3)}
x,=0
{ra(x1, x2, x3)}
{rs(x1, 1, x3)}
x=1

{ra(xy, x2, x3)}
{re(x1, x25 x3)}
while x,> x5 do
{re(x1, X2, X3) A X2> X3}

{ra(x1, x5, X3)}
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if x, =0 then

{ra(x1, %2, X3) A X, =0}

{rs(x;, x3,0)
x3=0
{rs(x1, x2, x3)}
{re(x1, X2, X3)}
else
{ra(xy, x2, x3) A 1x; =0}
{r:(x2+1, x5, x3)}
Xp=x+1
{ro(xy, x2, x3)}
{re(xy, x2, x3)}
fi
{re(x1, x2, X3)}
od
{re(xq, Xo, X3) A1 X5 > X3}
{ra(x{+ x5, x5, x3)}
X =x+x,

{ra(x1, x2, x3)}

{r9(xh X2, x3)}

5.5.2. Proposition. Let r be a ‘new’ relation symbol occurring in 7(S). Then r has
an occurrence in mw(S) of the form {r(x)}, i.e., the arguments are all variables.

Proof. Evident by inspection of the definition of #(S). O

5.6. Definition. Let S*eIStat(X) contain the n-ary relation symbol r, and let
p=p(xy,...,x,)e L(X). (Note that p may contain other variables than those
displayed.)

Then ¢7(S*) is the result of replacing each r(t,,...,t,), occurring in S*, by
p(ty,..., t,). Likewise we define ¢p?r P (S*).

..... n

5.6.1. Remark. One can think of the prototype proof m(S) as an initia) object in
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the category of proofs {p} $*{q} (where o(S*)=S); morphisms between proofs
are the substitutions ¢.

5.7. Lemma. Let S*€Pr(Z, E) be a reduced proof such that o(S*)=S. Then
¢: 7w (S) > S* for some substitution ¢ as in Definition 5.6. (So every proof is an instance
of the prototype proof.)

Proof. Consider S, S* as in the claim of the lemma. We may suppose that S* and
m(S) are matching; if not, only some trivial expansions (Definition 5.4) of $* are
required.
We will construct by induction on the structure of S a substitution ¢: 7(S) > S*.
Case 1. S=x=1t(y, x, z), where all variables in ¢ are displayed. Now

m(8) ={ri(y, x, 2)Hr(y, t, 2)} x:= 1 {r>(y, x, 2)} {rs(y, x, 2)}

and
S*={p}{palt/x]} x:=t{p2} { ps}.

So the substitution will be ¢: ri(y, x, z)—~p; (i=1, 2, 3).
Case 2. $=85,;S,. So S* ={po}{p:1} St {p2} S3 {pst{ps}-
By induction hypothesis we have substitutions

¢1:m(S1) > {p} ST {p2), ¢2377'(Sz)"'>{P2}S§ {ps}.

Now
(811 82) ={ro(x)} 7' (8)) 7' (85) {r(x)}
={ro(x)} - - - {ro () Hr (%)} - - - {ri(x)}
where =7(S;) and ——--=7(S,). From this it is evident how to construct
the desired ¢. (Remark: The arity of the new r-symbols in (S;), i =1, 2, is that
of S (i.e., n if S has the variables x,,..., x,).)

Case 3. S=if b then S, else S, fi. Then 7(S) and S* are as follows:
7(8) ={ro(x)} {r\(x)} if b then {r,(x) A b} ='(5)) {r2(x)}
else{r,(x) A6} 7'(S,) {r2(x)}
fi{r2(x)}{rs(x)},
S*={po}{p:} if b then{p, A b} ST {p,}

else {p, A b} S% {p,}
fi{p.}{ps}.
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Again ¢:r(x)—p; (i=0,1,2,3); the induction hypothesis takes care of the
correspondence between 7'(S;) and SF (i=1,2). ‘ ’
Case 4. S=while b do S’ od. (In the following ‘r;’ stands for ri(x)’.)

7(S) ={ro{r,} while b do{r, A b} #'(S") od {r, A—b} {r2}

induction

¢: hypothesis

S*= {p,}{p.} while b do {p,n b} S*od  {p, A 1b}{p}

Here r, = post(w'(S’)) and p, =post(S*). O

In the sequel we will need a simple proof-theoretical fact, stating that derivability
in first order predicate logic is invariant under substitutions ¢ (as in Definition 5.6).

5.8. Proposition. Let (X, E) be a specification and p, g € L(X). Let ¢ be a substitution
of assertions p; for relation symbols r,, as in Definition 5.6. ( The p,’s are not necessarily
in L(Z).) Let (E)={¢(p’)|p' € E}. Then

() Erp= ¢(E)-¢(p)
(i) Erp - ¢(E)-d(p)->d(q).

Proof. (i) A routine induction on the length of the derivation E + p.
(ii) follows from (i), noting that ¢(p->¢q) =¢(p)~> d(g). O

5.9. Proposition. Let 3°=3X0U 3 5 and E°=Eux(7(S)). Then (2°, E%) e,
(3, E).

Proof. Take arbitrary p, q such that HL(Z, E) —{p} S {q}. (E.g., take g = true.) Let
{p} $*{gq} € Pr(Z, E) be the corresponding proof; we may suppose it matches 7 (S).
Now let o € Alg(Z, E), so by soundness of HL we have & = {p} S {g}. Further,
it is not hard to see that the r,(x) can be interpreted in & just like the matching
assertions in { p} $*{g}.
Hence every & € Alg(Z, E) can be expanded to an &’ e Alg(Z°, EY). So, by the

conservativity criterium (Proposition 2.7.1), we have (£°, E°)= (3, E). The finite-
ness is obvious. [

5.10. Lemma. Let2'=3UX s, E'=E Ux(m(S,)) and let r(x), r'(x) be respec-
tively the assertions at the head and at the tail of 7 (S,).
Then the following statements are equivalent:

(i) HL(Z E)FS,=8S,,
(i) HL(Z, E)+; $,c8S,
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(i)  HL(Z®, E”) - {r(x)} S {r'(x)} = HL(Z’, E°) = {r(x)} S, {r'(x)}
(iv)  HL(Z", E”){r(x)} S, {r'(x)}.

Proof. (i) = (ii) is trivial, (ii) = (iii) follows from Proposition 5.9, and (iii) = (iv)
follows because it is obvious from the construction that HL(Z°, E)+
{r(x)} S5 {r'(x)}. It remains to prove that (iv) = (i).

Assume (iv): let {ro(x)} S* {r;(x)}ePr(Z° E°) be the corresponding proof.
Further, suppose for some (2',E')=(X, E), p,gqeL(2’) that we have
HL(Z', E")~{p} S, {q}. Let {p} S% {g}Pr(2’, E’) be the corresponding proof,
which we may suppose matching with #(S,). By Lemma 5.7, {p} S5 {q} is an
instance of 7(S,) via some substitution ¢.

Now consider ¢ ({ro(x)} ST {r,(x}) ={p} #(S% ) {g}. From the construction and by
Proposition 5.8 it follows that this is a proof in Pr(2', E’). Hence
HL(2', E") ={p} Si{q}. O

5.11. Theorem. HL(2X, E) - S,=S-and HL(Z, E) — S, = S,, aspredicatesof S, S,
are semi-decidable in E.

Proof. This follows immediately by noting that (£, E”) can effectively be computed
from S,, given (2, E), and using the equivalence (i) < (iv) in Lemma 5.10. O

6. Completions

In Section 7 we will need the possibility of taking, for given (2, E), a refinement
(&', E'Y= (2%, E) which is logically complete (see Definition 1.2.2). Also we will use
a refinement (2", E")= (2, E) which has an SP-calculus (see Definition 6.3). The
concepts and theorems thereabout, used below, are from Bergstra and Tucker [9, 10]
and Bergstra and Terlouw [6]. There, however, the following restriction is made:
E must have only infinite models. Since we want to develop the present theory in
full generality (also for, e.g., E=@), we will extend the above mentioned results
by some ‘formal’ constructions which do not require the restriction on E, and which
are made possible by the concept of a prototype proof 7(S). The disadvantage is
that in this way we will need an infinite signature extension 2’'=23, but for our
purpose that is no objection. (Question: Given a specification (2, E) such that E
has finite models, is there a logical complete (¥ L 4, E")= (2, E) where 4 is finite?)

6.1. Theorem. For every (X, E) there is a (X', E'Ye= (2, E) such that (X', E’) is
logically complete.

Proof. The proof is by a construction of length w?. The first  steps are as follows.
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Enumerate WP(Z) as {S,|neN} and let {(p,, ¢,)| n €N} be an enumeration of the
pairs of assertions € L(X). Now consider the sequence of asserted programs «, =
{Piot Stm, {9, } Where ( )o, ( ); are the projections corresponding to the well-
known bijection (,):N*-N. Note that every {p} S {g} occurs in this sequence.
Now we define by induction on n the specification (2, E,).
Basis: (2, Ey) =(2, E).
Induction step: Let (X, E,) be defined, and consider «,.,.
Case 1. Alg(2,, E,) ¥ @,+1. Then (2,11, Envt) = (2, E).
Case 2. Alg(Z,, E,) F a,+,. Say the prototype proof m(S,.+1,) has the form
{r(x)} Stus1), {r'(x)}andlet (2', E’) be the specification corresponding to m(Sn+1), )-
Then define

(En-H: En+1) = (zm En) o (El’ E’ U{p(n)o - r(x)7 r,(x) g q(n)o})-

(The r-symbols in (S ,+1),) have to be fresh compared to previous r-symbols in
(20 En).)

Further, let (2, E,) =Unecw (., E,).

Claim 1. (Z,, E))= (2, E)=--=2(ZX,,E,)=---3(2,,E,).

Proof of Claim 1. To show that (Z,, E,)<=(Z,+1, E,+,) for all n€ w, we use the
conservativity criterion of Proposition 2.7.1. Since we know (in Case 2 above) that
a,41 I8 true in every & € Alg(Z2,, E,), the newly added r-symbols can be interpreted
in &; that is, & can be expanded to an &' € Alg(Z,.1, E.1).

To show that (2, E,)=(Z2,, E,,) forall n € w, suppose E, - p, for some pe L(Z,).
Then, for some finite D< E,, D+ p. Hence, for some m=n, E, ~ p. Since
(2, E,)s=(2,, E,,) as just shown, E, —p.

Now that (2., E,) is constructed, the statements € WP(3,) and assertions
€L(2,) are again enumerated, and the procedure is repeated to yield
((Z)er (Eu)o)=(Z,2 E,>). Likewise (X, E,,) is constructed, and we put
(2 EN=Unew (Zons Eun)-

Claim?2. (£,,,E,,)=(2'", E)forallne w;and (&', E') is logically complete.

Proof of Claim 2. The first part is as in the proof of Claim 1. The logical
completeness is shown as follows. Let Alg(2’, E') = {p} S{q}, where {p} S{q}e
L(%'). Then {p}S{q}eL(Z, ., E,,) for some ncew, and Alg(Z,,,E..)E
{p} S {q} follows from Proposition 4.13. (Alternative argument: Because no models
were ‘lost” in the construction, i.e., p(Alg(2', E")=Alg(Z,, ., E. ) for the suit-
able reduction operator p.) Hence E, .+, contains «({p} 7(S){q}), that is,
HL(‘Ew.(n+l)’ Eoten)Hip} Siq). O

6.2. Corollary. Let Alg(2, E) = S,=S,. Then
A3, EN=(3,E) SiSuis ey Sa

Proof. Let (X', E') be a logically complete refinement of (=, E); by the preceding
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theorem this exists. By Lemma 4.13 we have

Alg(Z,E)E 5,285, © Alg(3',E')E §5,=8..
Now Alg(2', E') E S, =S, implies

Vp, qe L(3') (Alg(2', E') = {p} S:{q} = Alg(3', E") F {p} S:{q}).
Hence, by logical completeness of (2', E’), we have

Vp.qe L(2") (HL(Z', E') ~{p} S.{q} = HL(Z', E") ={p} S\ {q}),

i.e. Sl CHL(s,E) Sz. [

6.3. Definition. Let (X, E) be a specification. We say that (X, E) has an SP-calculus

(strongest postcondition calculus), if for each pe L(Z), Se€ WP(Z) there exists an
assertion SP(p, S) e L(2) such that

(i)  HL(Z, E)~{p} S{SP(p, S)},
(i) if HL(Z, E) ~{p} S{q}, then (5, E) — ¢ SP(p, S).

6.4. Theorem. Let (32, E) be a specification without finite models. Then there is a
conservative refinement PA(Z, E) of (2, E), called the Peano companion of (%, E),
which has an SP-calculus.

Proof. For the definition of PA(Z, E) and the proof that it has an SP-calculus, see
[10]and [6]. OI

6.4.1. Remark. It is possible to construct a ‘formal’ companion having an SP-
calculus, without the restriction on E, but at the cost of an infinite signature extension.
For the sequel we will not need the full strength of an SP-calculus and we will be
satisfied with the following proposition.

6.4.2. Proposition. Let p,ge L(ZX) and S€ WP(Z).

(i) Let p~°q abbreviate ¥(SP(p, S)~> q), where ¥ denotes the universal closure.
Then

PA(3, E)-{prp~°q}Sig}

(a kind of ‘S-modus ponens’).
(i) Let p=>°q abbreviate ¥(\ x({ p}m(S){q})), i.e., the universal closure of the
conjunction of the consequences in {p} w(S){q}. Let ' =30 X .. Then

(2, 0)—{prp=>°q}S{q}.

Proof. (i) Follows at once from the definitions.
(ii) Follows by a tedious but routine verification by induction on S. O
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7. Proving program inclusion

We are now in a position to prove one of the main theorems of this paper, viz.
the equivalence of semantical and cofinal inclusion. After that we will show how
this fact can be exploited to give formal proofs of program inclusion.

7.1. Theorem. Semantical and cofinal inclusion coincide; lLe.,
Alg(2,E)= S,=8, © V(I',E=(3,E) 3("E"=(2',E")

S\ Surzren So

Proof. (=). Suppose Alg(ZX, E)F= $;=8, and consider (2',E')= (2, E). By
Theorem 6.1 there is a (27, E")=(2’, E') which is logically complete. From
Alg(Z", E")E §,= 5, we have

Vp,qe L(3") (Alg(3", E") E{p} S: {q}= Alg(2", E") E {p} Si{q}).

By the logical completeness we can replace ‘Alg(2", E") =’ by ‘HL(Z”, E") . This
results in S} Sy s gy Sae

(&). Let E have no finite models. (The case that E has finite models, can be
dealt with analogously, as suggested by Proposition 6.4.2.)

Suppose Alg(2, E) ¥ S,=S,. Then also Alg(PA(Z, E)) #S,= S by Lemma 4.14.
So there is an & € Alg(PA(Z2, E)) such that & ' S,= S,. Hence for some a,be A
we have ‘o = §;(a) =b’but ‘o = S,(a) # b’, par abus de language. These facts can
be properly expressed by

6=(x=a~" x> b)rComp,s(a)=b,

for some n (see Computation Lemma 1.1.2). The g, b are new constant symbols.
Let of' = o/ be the expansion of & with distinguished elements a, b, and let (X', E’)
be the conservative refinement of PA(Z, E) obtained by adding a, b to the signature.
(By Lemma 2.7.1 this is indeed conservative.) Now

(i) HL(Z,E)F{6rx=a}S,{x+# b},
(i) HLE, EY¥{Orx=a}S {x#b}.

Ad (i). This is Proposition 6.4.2(i).

Ad (ii). &' 5{6 nx=a} S, {x# b}, hence Alg(3', E") {6 rx=a} S, {x # b}. By
soundness of HL, (ii) follows.

Finally, we note that (i) also holds in refinements of (X', E "), trivially; and the
same for (ii) by the downward invariance of Alg(,)={p} S{q} (Proposition 4.13)
Therefore, S, =5 g S, for all (2", E") e (3, E". O

We now know that the schema, given in Fig. 12, holds, and we want to prove
that, in general, all implications are displayed in this figure. First we will show in
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HL(I,E) |-
8 LS, \‘\
/ HL(Z,E) |k
s, Cs,
s, C S
! THL(Z,E) 2 ll,
(Z,E) logical v3 Alg(L,E) |=
N complete S] c Sz‘g C
HL(I,E) §5; £ 8y
3
s, C S
! THL(S,E) 2 %

Fig. 12.

Examples 7.2 and 7.3 that ;x5 and S,y p) are incomparable (see also Fig.
13). Then, in Example 7.4, we show that derivable inclusion is strictly stronger than
forced inclusion, in general. (lL.e., the proof system corresponding to derivable
inclusion proves less inclusions than the one corresponding to forced inclusion.)
Further, it will be shown in the next section (Theorem 8.5) that forced inclusion
and semantical inclusion are in general not equivalent. In other words, the proof
system corresponding to forced inclusion is incomplete.

Finally, at the end of this section (Remark 7.8), we will prove that the ‘dashed’
implication for logical complete (2, E) (see Fig. 12) can in general not be reversed,
and we will prove some assertions in the part ‘Intuition’ of the Introduction.

7.2. Example. Let o/ =(N,0, S, P), the ‘abacus-algebra’ as in Section 8, and con-
sider (X, E.,;). Define

S, =y:=0;S" where S'=while x# 0 do y:= Sy; x=Pxod
S,=y=x; x:=0.
So Alg(2,, E4) = §,=S,. However, S, Z (s, S2 because
(i)  HL(Z, E)-{x=z}S:{x=0ny=2z},
(i) HLZ,E)V¥{ix=z}S,{x=0ry=12z}.
Proof of (ii). Suppose not (ii). Then
HL(Z,, E,)F{x=2zAy=0}S {x=0nry=12z}.
Hence there must be an invariant r(x, y, z) such that E,, — ¢, A ¢ a ¢ where
dr=x=zay=0-r(x,y,2z),
b=3x", y [X #FOAx=Px'ny=Sy ar(x',y’, z)]>r(x, y, z),

di=x=0nrr(x,y,z)>y=2z
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P Question: give a
'natural' example
of a semantical but

not forced inclusion

_wEx. 7.2 (= 7.4)

'loop~unwinding'
(Ex. 7.6)

\_

6
Fig. 13. Venn-diagram of the various notions of inclusion.

- Logical inclusion (i.e., HL(Z, §) = S, = S,, see Examples 7.6 and 7.7).
. Derivable inclusion.

. Forced inclusion.

. Semantical inclusion = cofinal inclusion.

. Prooftheoretic inclusion.

. Inclusion in some extension.

[o RV I SN VI S IS

Also & = ¢, A ¢, A 3. However, a simple proof then shows that & = r(a, b, c) ©
a+b=c, in contradiction with the non-definability of + in & (see Remarks 8.3.1
and 3.3.2).

7.3. Example. Let #'=(N,0, S,+,X), 3 the signature of A& and E =E,.
Furthermore,

Si=x=0; while x#y do x:=x+1 od

S;=x=y

Then (i) S; =155y S, but (ii) S, # Alp(5E) 2.
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Proof. (i) HL is relatively complete for &, i.e.,
NE={p}S{q} & HL(Z, E)+{p} S{q}.
Now & = §; =S, implies
Vp,q NE{p}Si{q} & NFE{p}S.{q}
or equivalently
Vp,q HL(Z, E) —{p} S:{q} & HL(Z, E) - {p} S:{q},
i.e.,, S, =nis.g) S2. Since in our case indeed ¥ E S, =S,, we have (i).
(ii) However, in a nonstandard model /* € Alg(Z, E), S, will diverge when y is
nonstandard. So /* ¥ S, =S,, hence Alg(Z, E) 5 S,=S..
7.4. Example. Back to Example 7.2, which shows moreover that
HL(Z, E)~S,= S, ¢ HL(Z,E) - S,=8S,.

From S, Zy1(s,.E,) S2 it follows trivially that S; = S, is not derivable. However, for
(2", E"Y=(24, Ey) where £'=(N, 0, S, P,+) we do have

HL(Z4, Ey) - SiES, (%)

The proof of (%) is by the method of prototype proofs, as follows. Consider #(S,),
this is given by

{ro(x, )} {ri(x, x)} y = x {r(x, y)}{r2(0, y)}x = 0{r(x, )} {rs(x, y)}.
So we have to find a proof of {ro(x, y)} S;{rs(x, y)} in the theory
E o U{ro(x, y) > ri(x, x), ri(x, y) = 120, y), ra(x, y) > r3(x, y)}.
This is indeed possible:
{ro(x, Y)Hri(x, x)}{r2(0, x)} {r3(0, x)}
y=0
{r;(0, x) n y=0}
{3xo[r3(0, xo) Ax=xoA y=0]}
{3x0[r3(0, x0) A x+y = x0]}
while x # 0 do
{3xo[r5(0, x0) A x+y=2xAx#0]}
{3xo[r5(0, xo) A Px+Sy=xoAx# 0]}
y=Sy
{3x,[r3(0, xo) A Px+y=xA x#0]}
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x=Px
{3x0[r3(0, xo) A x+y=x,]}

od
{3x0[r3(0, x0) A x+y=1x0] A x =0}
{3x0[r3(0, x0) Ay =xon x =01}

{rs(x, y)}.

The above concepts and theorems generalize without any effort (other than
notational) to the case of multi-sorted signatures and algebras. To substantiate this

claim, we give the following example.

7.5. Example. Let X be the multi-sorted signature consisting of

domains : NUM, VEC, FUN
constants : 0,1e NUM, e VEC
functions : +: NUMXNUM - NUM
- NUMXNUM - NUM
AP:VECXNUM - VEC
INP:VECX VEC -» NUM
ROW:FUNXNUM - VEC
EVAL:FUNXNUM - NUM
variables : x,y, ze NUM
X Y, Ze VEC
a, Be FUN

The specification (X, E) we are interested in has the following axioms, describing

how the inproduct between two vectors should behave:
E ={Peano+all induction axioms
INP(, Z) =INP(Z, 0) =0
INP(AP(Z, x), AP(Z', x"))=INP(Z,Z") + x - x'
AP(Z, x)=AP(Z',x")»>Z=Z'nx=x
ROW(e, 0) =0

ROW(e, x+1)=AP(ROW(a, x), EVAL(a, x+1))

Vx EVAL(a, x) =EVAL(B, x) > a = 8}.
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Furthermore, let S;, S, € WP(2) be the following programs, both computing the
inproduct of two vectors:

Si;=A=0,B=0¢;2:=0; x:=0;
while x # y do x=x+1;
z=z+EVAL(q, x) - EVAL(S, x)
od x=0,

S;=A=ROW(a, y); B=ROW(B, y); z:=INP(A, B);
x=0;A=0; B:=0.

Now we want to prove that Alg(Z, E) = S,=S,. (The reverse does not hold by
the presence of nonstandard models in Alg(Z, E).) (This can be done by proving

that HL(Z2, E) - S, =S, using the method of prototype proofs, as follows. First we
write down 7 (S,):

{rO(xv Y 2, Aa B)}
{I’](x, y’ Z, ROW(Q, y)7 B)}

A=ROW(a,y)
{rl(x7 y’ Z, A’ B)}
{r2(-x7 ya z, A’ ROW(ﬂ, y))}
B:=ROW(B, y)
{r2(x’ y’ z, A’ B)}
{r:(x, y,INP(A, B), A, B)}
=INP(A, B)
{73()(, }’: z, A7 B)}
{74(0, )’, z, A’ B)}
x=0
{r4(x, .Y7 z, A7 B)}
{rS(x7 yv zZ, {/)a B)}
A=
{rS(x7 ya zZ, A’ B)}
{rﬁ(x, y’ z, A, ﬂ)}
B:=¢

{r()(x> )’, z, A? B)}
{r:(x, y, 2z, A, B)}
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So k(7(S,)), the set of consequences used in 7(S,), entails the following implications:
r(x, y,z, A, B)~>
r(x, y, z,ROW(aq, y), B) »
r:(x, y, z, ROW(a, y), ROW(B, y)) -
r3(x, y, INP(ROW(e, y), ROW(B, y)), ROW(a, y), ROW(B, y)) >
740, y, INP(ROW(a, y), ROW(B, y)), ROW(a, y), ROW(B, y)) >
r5(0, y, INP(ROW(e, y), ROW(B, y)),d, ROW(B, y)) >
76(0, y, INP(ROW(a, y), ROW(B, y)), 8, §) >
r7(0, y, INP(ROW(a, y), ROW(B, y)), 8, ).

Using these implications together with theory E, we can prove {ro(x, y, z, A, B)}
Si{r:(x,y, 2, A, B)} (and by Lemma 5.10 this proves HL(Z, E) $1E28,):

{ro(x, y, 2z, A, B)}
{r,(0, y,INP(ROW(a, y), ROW(B, y)), 0, 0)}

{r7(07 Y> INP(ROW(Q, )’), ROW(Ba )’)), A, g)}
. {r:(0, y, INP(ROW(a, y), ROW(B, y)), A, B)} (abbreviation: ry)

{ri Anz=0}

{rinz=0Ax=0}
{r7 A z=INP(ROW(q, x), ROW(B, x))}
while x # y do
(r7 A z=INP(ROW(e, x), ROW(B, x)) A x # y}
x=x+1;
{r7A3x' (z=INP(ROW(a, x'), ROW(B, x')) A x =x'+1
AX #y)}
z:=z+EVAL(e, x) - EVAL(S, x)
{r7 A3x', 2" (2 = INP(ROW(a, x'), ROW(B, x)rx=x"+1
rnx'#ynz=2z'+EVAL(q, x) - EVAL(B, x))}
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(Now use E)
{ry A3x" (z=INP(ROW(a, x'+1), ROW(B, x'+1))
Ax=x"+1ax"#y)}

{r5 A z=INP(ROW(a, x), ROW(B, x))}
od

{r} A z=INP(ROW(a, x), ROW(S, x)) A x =y}
{r:(0,y, z, A, B)}
x=0
{r:(x,y, 2z, A, B)}.
Hence Alg(2, E) = §,= ..

7.6. Example. Define (as a special case of derivable inclusion) logical inclusion of

S,in S, as follows: HL(Z, @) - S;= S,. Now the following well-known equivalences
are ‘logical’:
(i) (Loop-unwinding)

S, =while b do S od; D (D= x'= x),
S, =if b then while b do S od; D else D.

The proof that HL(Z, ) - S,= S, immediately follows by computing 7(S;) and
using the thus obtained set of consequences «(7(S;)):

ro(x)->r(x),
ri(x) nb-ry(0), ra(x) = ri(x),
ri(x) a—b > ry(x),

to prove that {ro(x)} S, {rs(x)}. Likewise for the reverse inclusion.
(i) Another example of logical inclusion, which is equally simple to verify:

S, =while true do S od, S, is arbitrary.
Then HL(Z, @) - S, = S,. This example is from [4, p. 93] as well as the next one:
(iii) S;=while b, v b, do S od
S, =while b, do S od; while b, do S; while b, do S od od.
Here also a simple computation yields the logical equivalence of Sy, S..
7.7. Example. Manna [20, p. 251, p. 259] gives several examples of program
equivalence which are all ‘logical’:

(D) Si=x=f(x1); x2:=g(xy, x3) Sy=x,=g(xy, x3)
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(i) S, =while p(x,) do x;:=g(x,, x3) od D
S, =if p(x,) than DIV else D fi
Here DIV =while x=xdox=x,and D=x=x
(i) S,=x=y+1;if x=1 then z:=0 else y:=y+1;
if y=1then z:=1 else z:=2 fifi
S,=x=y+1;ift x=1then z:=0else y:=y+1;
z=2f.
(Adapted from [20, p. 252]. Note that S; contains a useless branch.)

7.8. Remarks. (1) Abbreviate
Vp,qeL(2) Alg(3, E) ={p} S:{q} = Alg(Z, E) = {p} S.{q}

by S| Spes.ry S2 (Where PC stands for partial correctness).

Then, for (£, E) logically complete, it follows at once from Definition 1.2.2 that
Shise) and Epes gy coincide.

Since S\ Sais.e) S, implies S Spese) So (trivially) for all (2, E), we have
therefore, for logical complete (X, E),

S1Car=e S = S Shse) Sa

The reverse implication does not hold. We give a counterexample:
S=x=0,y:=0,
S,=while x#y do x:=x+1 od; x:=0; y =0,
(2,E)=(2,,Ey) where ¥=(N,0,1, +, X).

Now (Z, E) is logical complete (see [7]) and HL is relatively complete for & (see
[4, Chapter 3]). From the last fact it follows that S, =456 S2. However, due to
the presence of nonstandard models in Alg(Z, E), we have S, # algxE) Sa-

(2) Note that (1) also establishes that (i) 35 (i) (i.e., S)Spexs S,
S\ Eag=E) S2), as claimed in the Introduction. For another counterexample, see
[S, Theorem 5.8].

(3) As claimed in the Introduction:
Alg(Z,E)E $,=8, © V(X' E")= (3, E)S, Spcx ey Sa-

Here (=) is trivial.

Proof of (<): Assume the right-hand side, and suppose Alg(Z, E) k¥ S, S,.
Then since semantical and cofinal inclusion coincide (Theorem 7.1), we have

(2, E=(3,E) V(3" ENe=(3,E") S, ¢ HL(z"E") Sa2.
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Now consider such a (2', E’), and a (2", E") which is logically complete. Then by
the assumption of the right-hand side, S, Epc(s g+ S2; and by logical completeness,
Si| Envs- g S»; a contradiction.

8. Abacus arithmetic

In this section we will consider our paradigm algebra & =(N, 0, S, P). It is useful
by the following two well-known facts (already mentioned in Example 3.3.3).

8.1. Proposition. (i) E, is a decidable theory, and (ii) every partial recursive function
can be computed in o by some S€ WP(2,).

Using this proposition we will calculate the degrees in the arithmetical hierarchy
of the various inclusions S,= S, (as predicates of S;, S,) w.r.t. (24, Ey).

For a proof of Proposition 8.1(ii), see, e.g., [11, Chapters 6 and 7], where results
from [19] are presented. The proof there uses in fact not while-programs, but
flow-diagrams composed of only two operations:

assignments: x,,:=S(x,) (n=0,1,2,...)

branching operations:

- X = P(xn) >

(As pointed out in [19], such a flow-diagram is in fact computing on an infinite
abacus. Variables as in such a diagram are known as counters.) Combined with the
equally well-known fact that for every flow-diagram there is an equivalent while-
program (see, e.g., [19]) we have Proposition 8.1(ii).

For the sake of completeness, we will now outline a proof of Proposition 8.1(i),
as given in [14].

8.2. Definition. Let A be some set and let R< A" be an n-ary relation. Let
a,,...,a,-, € A be fixed. Then {xe A|R(a,,...,a;-1, %, a;,...,a, )} is called a
section of R (where 1=i<n).

8.3. Proposition. (a) Let &' =(N,0,S). Then
(i) E g is decidable,
(i) E . admits elimination of quantifiers,
(iii) a subset X =N is definable in ' iff X is finite or cofinite (i.e., N— X is finite).
More general, every definable n-ary relation R = N has only finite or cofinite sections.
(b) The same as in (a) holds for & =(N, 0, S, P).
(¢) Likewise for (Z,0, S, P).
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Proof. (a) (see[14]). (i) is proved there by considering the following axiomatization
of E‘;q':
S(x)#0,

S(x)=8(y) » x=y,
y#0 > 3x (y=S(x)),
S(x)#x,S(S(x)#x,...,S"(x)#x,... (forall n).

Using the Lo§-Vaught test it is proved that this axiomatization is complete.
Obviously it is also decidable. Hence E, is decidable.

(ii) As demonstrated in [14], for every assertion p € L(Z ) there is a quantifier-
free assertion g such that E.,+pe<>q. (This ‘elimination of quantifiers’ yields
another proof of (i).)

(iii) Routine from (ii).

(b) Note that P is definable in &' =(N, 0, S), by

Px)=yex=y=0vS(y)==x
Now use (a).

(¢) A routine adaptation of (b). O

8.3.1. Remark. Note that Proposition 8.3(b)(iii) yields an alternative proof of the
nondefinability of + in &. For, using a supposed definition of + one could define

the set X of even numbers in &/; a contradiction since X and its complement are
both infinite.

8.4. Application. The following is an example of S, S, such that the domain

inclusion Dom(S;) =Dom(S,) is not derivable but can be forced (see Example
9.5(ii)).

Let & be (Z,0, S, P) and (3, E)=(3,, Ey). Let
S,=y=0; while x> y do y:=S(y) od;
y=0; while x# y do y:= P(y) od
and
S;=y=0; if x=0 then x = x else DIV fi
where
DIV =while x=x do x=x od.

Clearly, S, and S, converge on x =0 and nowhere else.

Now HL(Z, E) —{x#0} S, {false}, as can easily be proved; however,
HL(Z, E)y*{x # 0} S, {false}. This can be made plausible by considering an informal
proof of {x# 0} S, {false}; then somehow one must mention the ordering < on Z.
However, < isnot presentin X, and not even definable in (X, E). (The nondefinability
of < in (2, E) can easily be proved using Padoa’s method (Theorem 3.3), by
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permuting some of the nonstandard copies of Z in a nonstandard model of (2, E);
cf. 3.3.2.)

That HL(Z, E) ¥{x # 0} S, {false} can be made precise as follows. If
HL(Z, E) - {x # 0} S, {false}, then, using x = S(y) <> P(x) =y, one easily shows that
the two invariants r,(x, y), r.(x, y) in S; must satisfy:

(1) x#0-> r(x0),

(2)  x#yan(xy) > nlxS(y),
(3)  n(xx)>rax0),

(4)  x#yan(xy) > nxP(y),
(5) rlx x).

There are several ‘solutions’ for ry, r, as subsets of Z2. However, using (1)-(5) we
have r;(1,0), hence r,(1, 1), hence r,(1, 0), hence r,(1, n) for all n=0. Moreover,
from (4) and (5), —1r»(1, m) for all m = 1. Therefore, every solution r, has a section
which is neither finite nor cofinite; so, by Proposition 8.3(c)(iii), 7, is not definable.

As promised in Section 7, we will now show that semantical inclusion and forced
inclusion are in general not equivalent.

8.5. Theorem. The proof system HL(Z, E) - S, =S, is in general not complete for
Si Eak=k) S

Proof. Let X be the signature of & = (N, 0, S, P). From Proposition 8.3(b) we know
that E = E, is decidable. Let [ |: WP(2) - w be an effective coding of programs;
we will write s for [S]. R and r are two relations on pairs of codes of programs
as follows:

r(Sl, 52) =4 HL(Z, E) - S]ESZ,
R(s1, 82) © SiCajsk) Sa

The incompleteness of |- for =, is shown by considering the specification (2, E)
and demonstrating that R # r. It turns out that R and r have different positions in
the arithmetical hierarchy. As a matter of fact r is £9 but R is complete I19, and
a fortiori r and R must differ.

We will first consider r. Working from its formal definition we obtain

r(S1,S,) © (2, ENe (3, E)[HL(Z, E) - §,=5,]
& 3(3', = (3, E) [(5, E) consistent & HL(Z, E) - S,= S,]

& (S, EMen [S' 25 & (X', E*U E) consistent

& HL(Z', E*U E)+ S,25,).
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Step (1) is justified by the completeness of (X, E) which entails that each consistent
refinement of it is a conservative one. Step (2) follows from Lemma 5.10(ii) which
says that the refinement in the definition of - can be taken finite if one wants.
Because (3, E*U E) is consistent’ is a [T} predicate and HL(2’, E*UE) ~ § =S,
is XY (due to Theorem 5.11 and the decidability of E), r must be 9.

Then consider R. S, S as.r) S2 i in general IT9 in E, R is at most II5. We have
to show that it is complete IT5. A well-known example of a complete IT9 relation
is the following one: t(s) < S computesa total function on & (for more information,
see [22]). We show that ¢ is 1-1 reducible to R. Let Xs={x,, . . ., X (s} be the set
of variables occurring in S. For x€ X, H(x) abbreviates the program while x #
0 do x:= P(x) od. H(Xs) abbreviates H(x;); H(x,);...;H(x(s))- The reduction
of t to R works as follows:

1(([S1) & R([H(Xs)], [S; H(Xs)T).

To see (=), assume H(Xs) Ease) S; H(Xs); then in of: H(X5)e S; H(Xs);
because H(X;) is total on </, S must be total on f as well, i.e., #( [S]) holds. On
the other hand assume #([S7]). Let B Alg(Z, E); clearly & is isomorphic to a
substructure of B. As H(Xs) and S; H(Xs) can only produce output 0 it is sufficient
to show Dom(H (X)) < Dom(S; H(Xs)). Dom(H(Xs)) = % thus S is defined
on Dom(H(Xy)) and yields values in **’ on such arguments; on these values in
turn, HL(X) is defined. O

9. Domain inclusion

In t‘hls section we will show that given some additional information about the
domains of §,, S,, semantical inclusion and forced inclusion S, = S, coincide.

9.1. Definition. (i) (Semantical inclusion of domains).
All:e:“ S, S, e W&”(f) Then Aﬂ:lg()?, E)= Dom(S,)=Dom(S,) if, for all &€
8(2, E). Dom(S;") < Dom(S%). Note that Alg(2, E) = Dom(S,) = Dom(S,)

implies
Alg(Z E)E={p} S, {false} = Alg(2, E)={p} S, {false}.
(i) (HL-inclusion of domains). Dom(S,) Snuse) Dom(S,) iff
HL(Z, E) = {p} S, {false} = HL(S, E) - {p} S, {false} for all peL(X).
(ili) (Derivable inclusion of domains). HL(S, E)+Dom(S,)= Dom(S,) iff
V(' E'=(3,E) Dom(S,) Shisr ey Dom(S,).
(iv) (Forced inclusion of domains). HL(Z E)E= Dom(Sl);Dom(Sz) iff
(X' E')e (3, E) HL(X', E') Dom(S,)=Dom(s,).
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9.1.1. Remark. The mathematical theory of domain inclusion is quite complicated
in fact. For instance, a pentagon of inclusion relations similar to the one after
Theorem 7.1, can be constructed and will turn out to have analogous properties.

In order to prove the main theorem of this section, we need the following
proposition.

9.2. Proposition. Let S, S, WP(Z) contain both the variables x,, ..., x, and
suppose Alg(2, E) = S,=8,. Then there is a (X', E'Y= (2, E) such that £’ =X U
{fi,.... fu}, where f,, ..., f, are ‘fresh’ n-ary function symbols, and such that

HL(S, E)H{x=2z}Si{x=f(x)}, i=1,2.
(Here x = f(z) abbreviates: x; = (X1, ..., X0)s.ovs Xn=Fn(X1s ety Xn).)

Proof. Let 3"=3 U {f,,...,f,} and E"= EuTI where
I'={Comp,s(z)=x->x=f(z)|n=0,i=1,2}

(for ‘Comp’, see Lemma 1.1.2).

Now every #eAlg(Z, E) can be expanded to an '€ Alg(3", E"), since
Alg(2, E) E S,£8,. Choose for the interpretation f* an arbitrary total function
extending the partial function S3' (which extends itself Si*). Therefore, by the
criterion for conservativity (Proposition 2.7.1), (2", E")= (X, E). Clearly,
Alg(Z", EME{x=z} S {x=f(2)}, i=1,2.

Now let (2, E’) be a logical completion of (2", E"). (By Theorem 6.1 this exists.)
Then Alg(3',E') = {x=2z}S;{x=f(z)}, i=1,2, and by the logical completeness
we have

HL(Z',E")={x=2z} S;{x=f(2)}. O

9.3. Theorem. Suppose HL(Z, E) - Dom(S,)=Dom(S,). Then
Alg(2,E)E S§|=S5, © HL(Z, E) I $,=8,.

Proof. (<) is already done in Section 7.
(=). Let S4, S, € WP(Z2) be such that

HL(Z, E) - Dom(S,)=Dom(S,) and Alg(3, E)E S, =8..

Let x=x,,..., x, be the variables occurring in S;, S>.

Step 1. Extend X to X, containing n-ary function symbols f,..., f, and E to
E, such that (X, E|)= (2, E) and HL(Z,, E)) = {x=z} S; {x=f(2)}, i=1, 2. This
is possible by Proposition 8.2.

By assumption, there is a (2,, E;)& (3, E) such that HL(ZX,, E>) = Dom(S,)=
Dom(S,). We may suppose X, 2, =X (cf. Proposition 4.7.2), hence by Robinson’s
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Consistency Theorem 2.6.2, (2, E')=(3,u 2,, E;u E,) is a conservative refine-
ment of (2, E).

Claim. HL(X', E') ~ S, 8,. (Then we are through.)

Proof of the Claim. Consider a refinement (2", E")= (£, E') such that

HL(2", E") +~{p} S, {q}.
We have to prove
(0)  HL(Z",E")r{p}Si{q}

Obviously, since g[ f(x)/(x]r —1g [ f(x)/x] is a tautology, (0) is equivalent with (1)
& (2) as follows:

(1) HL(E", E") = {paqlf(x)/x]} Si{q},
(2)  HL(Z", E") +{pA—q[f(x)/x]} 1 {q}.
Proof of (1). By the rule of consequence, it is sufficient to prove that
HL(3", E") - {q[f(x)/x]} S, {q}.
We know that
HL(Z,, E)) -{x=2} S, {x=f(z)},
hence, trivially,
HL(Z", E"Y{x=2z} S, {x=f(2)}.
By Proposition 1.2.3 it follows that
HL(Z", E") = {x =z n q[f(2)/2]} S, {x = f(2) n q[f(2)/ 2]}

Hence indeed HL(X", E") —{q[f(x)/x]} S, {q}.

Proof of (2). We know that HL(2", E") - {p} S, {g}. So, by the Conjunction rule
(1.2.3(i)) and Invariance rule (1.2.3(iii)) we have

HL(2", E") ={x=z npnq[f(2)/x]} S2{q r x = f(2) A q[f(2)/x]}

where the postcondition obviously implies {false}. By the assumption
HL(Z,, E;) = Dom(S,)=Dom(S,) we have, therefore, the same for S;:

HL(Z", E"Y-{x=z ApAr—q[f(z)/x]} S, {false}.
By the rule of consequence we have

HL(Z", E") -{x=z npa—q[f(2)/x]} S:{q}.
By Proposition 1.2.3(iv) we have

HL(2", E") ={3z(x =z n p Aq[f(2)/x]} S, {q}.
Le., indeed HL(ZX", E") = {p A g[f(x)/x]} S {q}. O
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9.4. Corollary. Let S,, S;€ WP(2) and suppose that S, is everywhere converging,
for all o4 € Alg(Z, E). Then

Alg(Z, E)E S,=8, © HL(S, E) - S,=S..

Proof. (<=) has already been proved in Section 7.
(=). Bythesoundnessof HL (Lemma 1.2.1) we see that HL(Z, E) t¥{ p} S, {false}
for all pe L(Z). Hence trivially

HL(Z, E)—{p} S, {false} = HL(Z, E) —{p} S, {false},

i.e.,, HL(Z, E) - Dom(S;)= Dom(S,).
Therefore, also trivially, HL(Z, E) - Dom(S;) = Dom(S,). Now apply the preced-
ing theorem. O

9.5. Example. (i) Let S;, S, be as in Example 7.5. Then HL(X, E,) - S; =5, and
S, is always converging. Hence by 8.4, Alg(2,, Ey) E S1ES,.

(ii) In Example 9.5(i) the domain inclusion is already derivable. An example
where domain inclusion is not derivable but can be forced, was given in 8.4.
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